Logarithmic barrier decomposition-based interior point methods for stochastic symmetric programming

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic barrier decomposition methods

A computational study of some logarithmic barrier decomposition algorithms for semi{innnite programming is presented in this paper. The conceptual algorithm is a straightforward adaptation of the logarithmic barrier cutting plane algorithm which was presented recently by den Hertog et al., to solve semi-innnite programming problems. Usually decomposition (cutting plane methods) use cutting plan...

متن کامل

Two-Stage Stochastic Semidefinite Programming and Decomposition Based Interior Point Methods: Theory

We introduce two-stage stochastic semidefinite programs with recourse and present a Benders decomposition based linearly convergent interior point algorithms to solve them. This extends the results in Zhao [16] wherein it was shown that the logarithmic barrier associated with the recourse function of two-stage stochastic linear programs with recourse behaves as a strongly self-concordant barrie...

متن کامل

A logarithmic barrier interior-point method based on majorant functions for second-order cone programming

We present a logarithmic barrier interior-point method for solving a second-order cone programming problem. Newton’s method is used to compute the descent direction, and majorant functions are used as an efficient alternative to line search methods to determine the displacement step along the direction. The efficiency of our method is shown by presenting numerical experiments.

متن کامل

Symmetric indefinite systems for interior point methods

We present a unified framework for solving linear and convex quadratic programs via interior point methods. At each iteration, this method solves an indefinite system whose matrix is [_~-2 A v] instead of reducing to obtain the usual AD2A v system. This methodology affords two advantages: (1) it avoids the fill created by explicitly forming the product AD2A v when A has dense columns; and (2) i...

متن کامل

Decomposition Based Interior Point Methods for Two-Stage Stochastic Convex Quadratic Programs with Recourse

Zhao [28] recently showed that the log barrier associated with the recourse function of twostage stochastic linear programs behaves as a strongly self-concordant barrier and forms a self concordant family on the first stage solutions. In this paper we show that the recourse function is also strongly self-concordant and forms a self concordant family for the two-stage stochastic convex quadratic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2014

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2013.07.075